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The paper is devoted to the elaboration of a mathematical apparatus for

studying second-order phase transitions, both commensurate and incommensu-

rate, and the properties of emerging phases on the basis of the approach in

equilibrium statistical mechanics proposed earlier by the author. It is shown that

the preliminary symmetry analysis for a concrete crystal can be performed

analogously with the one in the Landau phenomenological theory of phase

transitions. The analysis enables one to deduce a set of transcendental equations

that describe the emerging phases and corresponding phase transitions. The

treatment of an incommensurate phase is substantially complicated because the

symmetry of the phase cannot be described in terms of customary space groups.

For this reason, a strategy of representing the incommensurate phase as the limit

of a sequence of long-period commensurate phases whose period tends to

infinity is worked out.

1. Introduction

Incommensurate phases in dielectric crystals were intensively

investigated both theoretically and experimentally in the

1970–1980s (Blinc & Levanyuk, 1986). Interest in them

persists nowadays as well. The incommensurate phases are a

special state of solids that differs from ordinary crystals by the

lack of periodicity in one or more directions whereas a long-

range order exists unlike amorphous solids. Usually, the

incommensurate phases attend some second-order phase

transitions: an incommensurate phase can appear as an

intermediate phase between a high-temperature parent phase

and a low-temperature (commensurate) phase. The reasons

for the appearance of the incommensurate phase and its

properties are well described by the Landau theory of phase

transitions. The Landau theory, however, is a phenomen-

ological theory relying upon some general argumentation, the

theory that is not designed to explain microscopic causes of

the phenomenon, i.e. causes relevant to properties of mole-

cules or atoms.

A strict microscopic theory is statistical mechanics inas-

much as it tries to explain phenomena by proceeding from a

knowledge of the intermolecular potential and of other

properties of the molecules and atoms. In the late 1990s, a new

approach in equilibrium statistical mechanics was worked out

which is not based upon the Gibbs ensembles (Golovko, 1996;

see also Golovko, 2008a). The classical version of the

approach used in the present paper (the approach was devised

initially for quantum systems) leans upon the BBGKY hier-

archy of equations for reduced distribution functions while the

distinctive feature of the approach lies in constructing ther-

modynamics compatible with the hierarchy. Among other

things, the approach proved to be seminal in studies of the

crystalline state (Golovko, 2001, 2004, 2007). In particular,

Golovko (2004) has employed the approach for studies of

second-order phase transitions and the results obtained are in

full accord with the Landau phase-transition theory.

The main aim in the present paper is to apply the statistical

approach to investigation of the incommensurate phases in

dielectric crystals. Besides, the example of a second-order

phase transition considered by Golovko (2004) is rather

peculiar, in which the possibility of the transition is directly

seen from the expressions for effective potentials deduced in

that paper. Usually, an individual analysis is required to see

the possibility of a phase transition in a concrete crystal. We

shall show also how the analysis can be carried out in statistical

theory. This can be done analogously with the Landau theory

although some refinements are needed which are not obliga-

tory in the Landau theory.

Many theoretical studies on incommensurate phases are

based on the Landau free energy characteristic of ammonium

fluorberyllate, (NH4)2BeF4, whose high-temperature space

group is D16
2h (note that the high-temperature phase of many

crystals that have an incommensurate phase pertains to the

same orthorhombic space group). To be specific and for the

purposes of comparison with the Landau theory we shall carry

out our investigation using, as an example, the sequence of the

phase transitions that occur in ammonium fluorberyllate. At

the same time, the approach that will be employed is devel-

oped in detail only for systems containing particles of one kind

with spherically symmetric interaction.1 An equilibrium

1 An extension of the approach to systems that contain particles of several
kinds can be found in Golovko (2008b).

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dm5035&bbid=BB31
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767313003619&domain=pdf&date_stamp=2013-04-16


crystal composed of such particles should be of cubic

symmetry. Of course, the orthorhombic lattice may be

obtained from the cubic one by applying appropriate external

stresses. However, space group D16
2h is not a subgroup of any

other space group of a higher crystal class if no change in the

number of particles in the unit cell is involved (Boyle &

Lawrenson, 1972) and thereby it cannot be obtained from a

cubic space group by continuous deformation. For this reason,

a D16
2h crystal composed of particles of one kind with spheri-

cally symmetric interaction can be in a metastable state alone,

which may also entail other peculiarities irrelevant to our

problem. Our main goal in this paper is to work out a math-

ematical apparatus for treating incommensurate phases in

statistical theory, and the example of space group D16
2h is

sufficiently general and well suited for this. At the same time, it

should be emphasized that the results obtained cannot be

applied directly to ammonium fluorberyllate, whose molecules

are by no means spherically symmetric.

As mentioned above, one of the aims in the present paper is

to compare the approach used and the results obtained with

its help with the ones that follow from the Landau phase-

transition theory. To this end, in x2 we outline the Landau

theory as applied to incommensurate phases and adduce its

results needed in this paper. In x3, we formulate the basic

equations of the statistical approach employed for consid-

eration of the crystalline state and apply them in x4 to the D16
2h

parent phase from which the phase transitions studied

commence. We show in x5 how the symmetry analysis

concerning a commensurate phase transition can be carried

out in statistical theory and how the theory describes the

emerging phase. x6 is devoted to the incommensurate phases

in statistical theory and to corresponding phase transitions.

2. Incommensurate phases in the Landau phase-
transition theory

A typical density of the Landau free energy used for treatment

of an incommensurate phase is of the form (Levanyuk &

Sannikov, 1976a,b)

~FFðyÞ ¼ F þ
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Here F is a term irrelevant to our problem, � and � are

components of the order parameter. The term with the coef-

ficient � is the Lifshitz invariant (for convenience in the

following we assume that the incommensurate modulation

occurs along the y axis). The invariant can exist only if the

order parameter has two components or more. In the case

where the invariant is admitted by the irreducible repre-

sentation that describes the phase transition in question, there

inevitably appears an incommensurate phase. The invariants

of fourth order in � and � with the coefficients �1 and �2 are

written in a form convenient for further treatment. We assume

that �1 > |�2|, otherwise invariants of sixth order in � and �

must be taken into account. If the length of the crystal in the y

direction is L, the free energy per unit length is

F ¼
1

L

ZL

0

~FFðyÞ dy: ð2Þ

As is usual in the Landau theory, we presume that the coef-

ficient � alone depends upon the temperature varying linearly

with it.

Were the Lifshitz invariant lacking, the minimum of F

would correspond to a uniform solution � = constant and � =

constant because of the last term in equation (1), which is

always present (we assume that � > 0). Minimizing the free

energy in that event, one would, if � < 0, arrive at two

nontrivial solutions corresponding to two possible commen-

surate phases:

(i) � 6¼ 0; � ¼ 0 or vice versa,

�2
¼ �

�

�1 þ �2

; F ¼ F �
�2

4 �1 þ �2ð Þ
; ð3Þ

(ii)

�2 ¼ �2 ¼ �
�

2 �1 � �2ð Þ
; F ¼ �FF �

�2

4 �1 � �2ð Þ
: ð4Þ

The first solution is energetically preferable if �2 < 0, the

second one if �2 > 0.

Before proceeding further it is instructive to discuss the

problem from the viewpoint of the concept of a soft mode in

the high-temperature parent phase. The soft mode in ammo-

nium fluorberyllate occurs at the boundary of the Brillouin

zone to which the wavevector K = a2/2 corresponds, where a2

is the basic reciprocal-lattice vector oriented along the y axis

in the present notation (Fig. 1, where the Brillouin-zone

boundary is denoted as point B with the vertical line). If the

Lifshitz invariant does not exist at K = a2/2, the soft-mode

branch has an extremum at K = a2/2 as in Fig. 1(a). In the case

where the extremum is a minimum (curve 1 in Fig. 1a), as the

temperature lowers [the length of the segment AB in Fig. 1 is

proportional to the coefficient � in equation (1)], it is the

frequency ! at K = a2/2 that vanishes. As a result, in the crystal

an atom-displacement wave is frozen in and there occurs a

phase transition at � = 0 into a commensurate phase described

by equation (3) or (4), whereas the crystal period along the y
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Figure 1
Dispersion curves (phonon branches) near the Brillouin-zone boundary
(point B) in the parent phase: (a) the Lifshitz invariant is lacking, (b) the
Lifshitz invariant exists.



axis doubles for the wavelength corresponding to K = a2/2 is

equal to 2d2 where d2 is the period in the parent phase.

The existence of the Lifshitz invariant at K = a2/2 signifies a

nonzero slope of the phonon branch at point A (Fig. 1b). In

actual fact, two phonon branches meet at point A in this

instance as long as all dispersion curves can be transferred to

the first Brillouin zone. The lower branch is necessarily a

minimum inside the zone and, as the temperature lowers, it is

the frequency at point C that vanishes first, although � > 0. As

a result, a superstructure with the wavevector K = a2/2 � k

arises in the crystal whereas there is no reason for the ratio

k/a2 to be rational. The ratio being irrational, one will have

two mutually incommensurable periods in the crystal, namely,

the period d2 of the underlying structure that remains and the

period of the superstructure, that is to say, one will have an

incommensurate phase without any periodicity along the y

axis but with a definite long-range order.

Even if the Lifshitz invariant does not exist, the extremum

at K = a2/2 can be a maximum (curve 2 in Fig. 1a). As the

temperature lowers, it is the frequency at point C that vanishes

first and one will again have an incommensurate phase called

type II (the incommensurate phase discussed previously is

called type I). The emergence of the incommensurate phase of

type II is due to peculiarities of intermolecular interactions

that lead to a dispersion curve with a minimum inside the

Brillouin zone while the inevitability of the type-I incom-

mensurate phase can be forecast from symmetry considera-

tions. Both of these types are observed experimentally in

crystals (Blinc & Levanyuk, 1986).

We revert now to the Landau free energy. Substituting

equation (1) into (2) and minimizing the functional F yields

the following Euler–Lagrange equations:

�
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Near the phase-transition point where � and � are small, one

can neglect the nonlinear terms in equations (5) and (6). The

resulting linear equations admit a solution

� ¼ � cos ky; � ¼ � sin ky ð7Þ

with � = constant and

k ¼
1

�
� � ð�2

� ��Þ1=2
� �

: ð8Þ

The last equation shows that the maximal value of � at which a

real value of k exists is � = �0 � �2/� while then k = �/�.
Therefore, at � = �0 > 0 there occurs a phase transition into an

incommensurate phase in accord with Fig. 1(b).

Equations (5) and (6) do not lend themselves to analytical

solution in the general case. The equations were solved

numerically (Ishibashi & Dvořák, 1978; Shiba & Ishibashi,

1978) and there exists a strict analytical solution valid for an

especial relation between the coefficients in equation (1)

(Golovko, 1984a,b); approximate methods were exploited as

well (Golovko, 1980a,b). The solutions obtained show that, as

the temperature lowers, the value of k decreases and tends to

zero. When k approaches zero, there occurs a phase transition

to one of the commensurate phases described by equations (3)

or (4). This phase transition, referred to as a lock-in transition,

has specific features in comparison with an ordinary second-

order transition (Blinc & Levanyuk, 1986, Vol. 1, ch. 2).

Near the lock-in transition, the incommensurate phase

becomes domain-like. The structure of the incommensurate

phase inside the domains factually coincides with that of

the corresponding low-temperature commensurate phase,

whereas distinctions take place only in the domain walls,

called the discommensurations. If the lock-in transition is

continuous, it happens when the distance between the

discommensurations becomes infinite, in which case the crystal

will contain only one or two domains with the commensurate

phase.

Closing the section, it should be emphasized that the

Landau phase-transition theory is strict only in the immediate

vicinity of the phase-transition point [excluding the critical

region (Ginzburg et al., 1980)]. All modes in the crystal are

coupled with one another, which gives rise to secondary order

parameters that should be taken into account in the free

energy and whose role augments as the temperature lowers. In

the case of an incommensurate phase, higher derivatives of the

order parameters and their powers can play a part if the

temperature is not sufficiently close to the phase-transition

temperature. Appreciably below this temperature, the Landau

theory based upon a simplified free energy of the type of

equation (1) should be regarded only as a model.

3. Basic equations of the statistical theory of the
crystalline state

In the present paper, we assume the same form of the pair

correlation function as in the paper by Golovko (2007) and

utilize the same equations for the crystalline state. The first

equation of the BBGKY hierarchy with that pair correlation

function yields, for the singlet density distribution �(r),

�ðrÞ ¼ C exp½�UðrÞ=	�; ð9Þ

where 	 is the temperature in units of energy. The constant C is

to be found from the normalization conditionR
V

�ðrÞ dr ¼ N; ð10Þ

where the integration is carried out over the volume V of the

crystal that contains N particles.

Equation (9) relates the density �(r) with the effective

potential

UðrÞ ¼
R

Kg jr� r0jð Þ � r0ð Þ dr0; ð11Þ

in which

KgðrÞ ¼

Zr

1

dKðr0Þ

dr0
gðr0Þ dr0: ð12Þ
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Here g(r)� g(|r|) is the pair correlation function and we imply

that the particles interact by means of a two-body potential

K(|ri � rj|).

Upon placing equation (11) in equation (9) we obtain a

nonlinear integral equation for �(r). Of course, we should

know the pair correlation function g(r) that figures in equation

(12). Strictly speaking, the function has to be found from the

second equation of the BBGKY hierarchy. In this paper we

shall carry out our investigation without specifying the form of

g(r). Certainly, to apply results obtained in the paper to a

concrete crystal a knowledge of g(r) is required, which will be

discussed in the concluding section. In the papers by Golovko

(2001, 2004, 2007) it was demonstrated that many interesting

results for a crystal can be obtained without specifying the

form of g(r). This is connected with the fact that the leading

role for the crystal is played by the first BBGKY equation that

is satisfied identically for a fluid where, for this reason, the

leading role goes over to the second BBGKY equation for the

pair correlation function, whereas this second equation is

auxiliary for the crystal (Golovko, 2004, 2007).

The main idea in the papers by Golovko (2001, 2004, 2007)

as to treating the integral equation for the density �(r) is to

expand �(r) in a Fourier series:

�ðrÞ ¼
P1

l;m;n¼�1

almn expðiArÞ; ð13Þ

where A = la1 + ma2 + na3 with the basic reciprocal-lattice

vectors a1, a2 and a3. Upon substituting equation (13) into

equation (11) one finds the expansion for U(r),

UðrÞ ¼
P

l;m;n

almn�ðAÞ expðiArÞ; ð14Þ

in which A = |A| and

�ðAÞ ¼

Z
KgðjrjÞ expðiArÞ dr ¼

4


A

Z1
0

rKgðrÞ sin Ar dr: ð15Þ

If one inserts equations (13) and (14) into equation (9), one

obtains a set of equations for almn (Golovko, 2001):

almn ¼
�0

8
3G

Z2

0

Z2

0

Z2

0

exp

�
�

1

	

X10
l0;m0;n0¼�1

al0m0n0�ðA
0
Þ

� exp½iðl0�1 þm0�2 þ n0�3Þ�

� iðl�1 þm�2 þ n�3Þ

	
d�1 d�2 d�3

ð16Þ

with

G ¼
1

8
3

Z2

0

Z2

0

Z2

0

exp

�
�

1

	

X0
l;m;n

almn�ðAÞ

� exp½iðl�1 þm�2 þ n�3Þ�

	
d�1 d�2 d�3; ð17Þ

where the prime over the summation signs denotes omission

of the term with l0 = m0 = n0 = 0 in equation (16) or with l = m =

n = 0 in (17), A0 = |A0| = |l0a1 + m0a2 + n0a3|, and �0 = a000 = N/V

is the average number density. It will be noted that equations

(16) and (17) are written down as in Golovko (2007) and differ

slightly in form from those of Golovko (2001, 2004).

It is worthy of remark that all information in equations (16)

and (17) about the intermolecular potential K(r), the pair

correlation function g(r) and even about the crystal periods d1,

d2 and d3 resides only in �(A). The quantity �(0) that plays an

important role for fluids (Golovko, 2007) is not present in

equations (16) and (17). It is not even necessary to know the

full function �(k), for equations (16) and (17) contain the

value of the function only at a discrete set of points in reci-

procal space since A = |la1 + ma2 + na3|. Aside from �(A), only

two external parameters �0 and 	 figure in (16) and (17). In

this paper we shall neglect the dependence of �(A) upon the

temperature 	 because the dependence should be weak for

crystals according to x4 of Golovko (2007) and does not

impact on the principal results obtained in the present paper.

If necessary, the dependence can be taken into account when

dealing with a concrete situation.

For what follows we need also the Helmholtz free energy

[equation (5.9) of Golovko (2007)],

F ¼ Ff � N	 ln G�
V

2

X0
l;m;n

almn



 

2 �ðAÞ; ð18Þ

in which Ff is the free energy of the corresponding fluid that is

not required for our purposes.

Golovko (2004) has demonstrated that the concrete form of

the Fourier series of equation (13) is different for different

space groups and, moreover, is characteristic of each space

group (only cubic space groups were considered in that

paper). The form of the Fourier series specifies a definite form

of the system of equations for the Fourier coefficients almn,

which in its turn determines peculiarities of solutions to the

system and eventually influences properties of the relevant

crystal and phase transitions in it.

4. Parent phase

We proceed now to a study of the high-temperature parent

phase with space group D16
2h from which the phase transitions

considered in the following sections originate. As long as we

utilize Kovalev’s (1986, 1993) tables in the next sections, we

adopt the description of space groups given by Kovalev (1986,

1993), which implies an appropriate choice of the coordinate

system. First of all, we should establish the form of the Fourier

series if space group D16
2h is involved.

Seeing that this space group pertains to the orthorhombic

system, instead of the general form of equation (13) the

Fourier series can be written in the form

�ðrÞ ¼
P1

l;m;n¼�1

almn exp½i la1xþma2yþ na3zð Þ�: ð19Þ

In our case it is convenient to consider the effective potential

U(r) of equation (14) that has the same symmetry as �(r) for

�ðAÞ = �½ðl2a2
1 þm2a2

2 þ n2a2
3Þ

1=2
� does not change the
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symmetry. An analysis akin to the one carried out in the

appendix of the paper by Golovko (2004) shows that first

terms in U(r) for D16
2h are of the form

UðrÞ ¼ �0�ð0Þ þ 4�1� ða
2
1 þ a2

3Þ
1=2

� �
cos a1x sin a3z

þ 4�2� ða
2
2 þ a2

3Þ
1=2

� �
sin a2y cos a3z

þ 8�03� ða
2
1 þ a2

2 þ a2
3Þ

1=2
� �

cos a1x cos a2y cos a3z

þ 2�04�ð2a1Þ cos 2a1xþ 2�004�ð2a2Þ cos 2a2y

þ 2�0004 �ð2a3Þ cos 2a3zþ . . . ; ð20Þ

where

�1 ¼ ia101; �2 ¼ ia011; �
0
3 ¼ a111; �

0
4 ¼ a200; �

00
4 ¼ a020;

�0004 ¼ a002: ð21Þ

For simplicity’s sake, we shall assume henceforward that a1 =

a2 and a3 ’ a1.

In the following we shall use the Kirkwood approximation

for a crystal (Kirkwood & Monroe, 1941; Golovko, 2004). The

approximation consists in putting �(A) = 0 if A > A0 in the

effective potential U(r) of equation (14) and in other

formulae. In the paper by Golovko (2007) it is demonstrated

using the Lennard-Jones potential as an example that the

Kirkwood approximation is rather good for the crystal. It

should be underlined that, although one retains only several

Fourier harmonics in U(r), the density �(r) contains all

harmonics because the approximation does not concern almn.

Implying the Kirkwood approximation we suppose that

�(�ai) = 0 if � > 21=2, in which case equation (20) becomes

UðrÞ ¼ �0�ð0Þ þ 4�1�1 cos a1x sin a3zþ 4�2�1 sin a2y cos a3z;

ð22Þ

where �1 = � ða2
1 þ a2

3Þ
1=2

� �
= � ða2

2 þ a2
3Þ

1=2
� �

.

We see from equation (22) that with the approximation

used it is sufficient to deduce equations for �1 and �2 alone.

This can be performed with the help of equations (16) and

(21). When reducing equation (16) it is necessary to prove that

some integrals vanish, which can be done by appropriate

replacement of the variables of integration. As a result, we

shall obtain the following set of transcendental equations:

�1

�0

¼
I
ð1Þ
1 �1; �2ð Þ

I
ð1Þ
0 �1; �2ð Þ

;
�2

�0

¼
I
ð1Þ
2 �1; �2ð Þ

I
ð1Þ
0 �1; �2ð Þ

; ð23Þ

where

I
ð1Þ
0 �1; �2ð Þ ¼

1

8
3

Z2

0

Z2

0

Z2

0

exp½�4ð�1 cos �1 sin �3

þ �2 sin �2 cos �3Þ� d�1 d�2 d�3; ð24Þ

I
ð1Þ
1 �1; �2ð Þ ¼

1

8
3

Z2

0

Z2

0

Z2

0

cos �1 sin �3 exp½�4ð�1 cos �1 sin �3

þ �2 sin �2 cos �3Þ� d�1 d�2 d�3; ð25Þ

I
ð1Þ
2 �1; �2ð Þ ¼

1

8
3

Z2

0

Z2

0

Z2

0

sin �2 cos �3 exp½�4ð�1 cos �1 sin �3

þ �2 sin �2 cos �3Þ� d�1 d�2 d�3; ð26Þ

�1 ¼
�1�1

	
; �2 ¼

�2�1

	
: ð27Þ

It can be readily shown that

I
ð1Þ
1 �1; �2ð Þ ¼ �

1

4

@Ið1Þ0 �1; �2ð Þ

@�1

; I
ð1Þ
2 �1; �2ð Þ ¼ �

1

4

@Ið1Þ0 �1; �2ð Þ

@�2

;

I
ð1Þ
1 �1; �2ð Þ ¼ I

ð1Þ
2 �2; �1ð Þ: ð28Þ

Consequently it is sufficient to investigate the integral I
ð1Þ
0

alone. The simplest method for calculating I
ð1Þ
0 is to expand the

exponential of equation (24) in a series with the result (cf.

Golovko, 2004)

I
ð1Þ
0 �1; �2ð Þ ¼ I

ð1Þ
0 �2; �1ð Þ ¼

X1
n¼0

1

n!

Xn

m¼0

ð2n� 2mÞ!ð2mÞ!

ðn�mÞ!3ðmÞ!3

� �2m
1 �

2n�2m
2 : ð29Þ

With use made of equation (23), the equations of (27) can be

rewritten as

	

�0�1

¼
I
ð1Þ
1 �1; �2ð Þ

�1I
ð1Þ
0 �1; �2ð Þ

;
�2I
ð1Þ
1 �1; �2ð Þ

�1I
ð1Þ
2 �1; �2ð Þ

¼ 1: ð30Þ

In actual fact, equations (23) and (30) directly yield the

temperature dependence of �1 and �2 in a parametric form, �1

and �2 being the parameters. At a given temperature 	, from

equation (30) we find �1 and �2 which give the corresponding

values of �1 and �2 when substituted into equation (23).

According to equations (24), (29) and (28), always I
ð1Þ
0 > 0

whereas I
ð1Þ
1 is opposite in sign to �1. Therefore the right-hand

side of the first equation of (30) is always negative and in

consequence the solution exists only if �1 < 0 (cf. Golovko,

2004).

An analysis shows that there exist three nontrivial solutions:

ðiÞ�1 6¼ 0; �2 ¼ 0; ðiiÞ�1 ¼ 0; �2 6¼ 0; ðiiiÞ�1 ¼ �2:

ð31Þ

The solutions make their appearance when �1 and �2 are

small, and the condition for this can be found upon placing the

expansion of equation (29) in equation (23). All three solu-

tions exist if 	 � ��0�1. At 	 = ��0�1 = �0|�1| there occurs a

phase transition from the liquid to a D16
2h crystal.

Now, by equation (18), we can calculate the difference F �

Ff of the Helmholtz free energies for the crystal and liquid.

With the same assumption for �(A) as in equation (22), in

dimensionless units we have

Fc �
F � Ff

�0j�1jN
¼ 2

�2
1 þ �

2
2

�2
0

� ~		 ln I
ð1Þ
0 ; ð32Þ

where ~		 ¼ 	=�0j�1j is a dimensionless temperature.

The result of numerical calculations for the temperature

dependence of Fc is presented in Fig. 2. The figure shows that

the liquid–crystal phase transition should be second order in
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the present case. An argument was adduced by Golovko

(2004) that the second-order phase transition between a fluid

and crystal is in fact impossible. This is of no importance for

the present investigation inasmuch as we are interested in the

D16
2h crystal itself and not in the question as to how it can be

obtained. It is to be added that we have set a1 = a2 above (if a1

6¼ a2, Fig. 2 would be more complicated) and have used the

simplified form of U(r) of equation (22) instead of equation

(20) in order to have the simplest variant of the D16
2h phase

because the phase plays an auxiliary role for the studies in this

paper.

Let us point out nevertheless some curious results that

follow from Fig. 2. Curve 1 corresponds to solutions (i) or (ii)

of equation (31), curve 2 to solution (iii) of equation (31).

Factually, solutions (i) and (ii) lead to two-dimensional crys-

tals, which is seen from equation (22). Therefore, Fig. 2 indi-

cates that, in the case under consideration, the two-

dimensional crystals are energetically more preferable than

the three-dimensional one relevant to solution (iii). This is due

to the fact that we used the simplified form of U(r) of equation

(22) instead of equation (20). Besides, as noted in x1 a D16
2h

crystal composed of particles of one kind with spherically

symmetric interaction can be in a metastable state alone. In

the following sections, we shall study phase transitions

implying that the parent phase corresponds to solution (iii) of

equation (31) although the phase is metastable.

5. Commensurate phase transition

Seeing that our studies are based upon the sequence of phase

transitions that occur in ammonium fluorberyllate, let us recall

the relevant phase transitions (Iizumi & Gesi, 1977; Onodera

& Shiozaki, 1977). The high-temperature D16
2h phase exists at T

> 183 K, between 183 and 177 K an incommensurate phase is

observed, and below T = 177 K there emerges a polar

commensurate phase with space group C9
2v in which the

polarization is directed along the z axis and the period along

the y axis doubles (we choose the coordinate system as in x4).

As is done in the Landau theory, we should first consider

the transition from a D16
2h phase to a C9

2v phase. When analysing

the transition in the Landau theory one finds that there exists

a Lifshitz invariant and therefore a direct transition from the

D16
2h phase to the C9

2v phase is impossible (see x2). In the

present section, we shall ignore the existence of the Lifshitz

invariant and, using this example, show how a commensurate

phase transition can be treated in statistical theory. This

procedure corresponds to obtaining the solutions of equations

(3) or (4).

First of all, it is necessary to establish the form of the

Fourier series for space group C9
2v. The group pertains to the

same orthorhombic system and we have again equation (19).

We must take a coordinate system compatible with the one

chosen in the previous section for space group D16
2h. To this

end, the x and y axes adopted by Kovalev (1986, 1993) for

space group C9
2v are to be interchanged. Now, analogously with

equation (20), for this space group we have

UðrÞ ¼ �0�ð0Þ þ 4�02� ða
2
1 þ a2

3Þ
1=2

� �
cos a1x cos a3z

þ 4�002� ða
2
1 þ a2

3Þ
1=2

� �
cos a1x sin a3z

þ 4�0002 � ða
2
1 þ a2

2Þ
1=2

� �
sin a1x sin a2y

þ 8�03� ða
2
1 þ a2

2 þ a2
3Þ

1=2
� �

sin a1x cos a2y sin a3z

þ 8�003� ða
2
1 þ a2

2 þ a2
3Þ

1=2
� �

sin a1x cos a2y cos a3z

þ 2�04�ð2a1Þ cos 2a1xþ 2�004�ð2a2Þ cos 2a2y

þ 2�0004 �ð2a3Þ cos 2a3zþ 2�00004 �ð2a3Þ sin 2a3zþ . . . ;

ð33Þ

where

�02 � i�002 ¼ a101; �
000
2 ¼ �a110; �

0
2 þ i�002 ¼ �a111; �

0
4 ¼ a200;

�004 ¼ a020; �
000
4 � i�00004 ¼ a002: ð34Þ

Proceeding in line with the Landau theory we should now

identify the irreducible representation of space group D16
2h

responsible for the D16
2h–C9

2v transition. Seeing that the period

in the C9
2v phase doubles along the y axis, the representation

must correspond to the point K = a2/2 of the Brillouin zone

(see also x2). According to Kovalev’s (1986, 1993) tables there

are two irreducible representations T1 and T2 under number

T70 relevant to this point. A standard analysis (Landau &

Lifshitz, 1980; Lyubarskii, 1957, 1960) shows that only T2 leads

to a C9
2v phase.

In the Landau theory, it remains only to determine the

number of different invariants composed of the basis functions

of the representation ’1(r) and ’2(r) (replaced further by �
and �); in particular, one will see that there is a Lifshitz

invariant in this case. Thereupon one can at once write down

the free energy of equation (1), as the form of the invariants

may be readily established, while the explicit form of ’1(r) and

’2(r) is not required.

In the statistical approach it is necessary to know the basis

functions ’1(r) and ’2(r). It is not difficult to surmise a possible

form of the functions, namely, ’1 = sin a1x exp(�ia2y/2) and ’2

= sin a1x exp(ia2y/2), and to verify that they transform

according to the representation T2. For our purposes we take

linear combinations of these functions that are real-valued:
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Figure 2
Temperature dependence of Fc defined in equation (32) for space group
D16

2h.



’01 ¼ sin a1x sin
a2y

2
; ’02 ¼ sin a1x cos

a2y

2
: ð35Þ

The C9
2v phase emerges when a wave corresponding to one of

the functions is frozen-in in the crystal (cf. x2). It should be

remarked that both the functions lead to the same C9
2v

symmetry because they go over into each other if the coor-

dinate origin is shifted along the y axis. If the coordinate

system is chosen as in equation (33), we should use ’01 of

equation (35). Thus below the phase-transition point the

potential U(r) acquires the form

UðrÞ ¼ U0ðrÞ þ C1 sin a1x sin
a2y

2
; ð36Þ

where U0(r) is of D16
2h symmetry. We take U(r) of equation (22)

for U0(r), which yields the potential that will enable us to study

the phase transition and properties of the emerging C9
2v phase:

UðrÞ ¼ �0�ð0Þ þ 4�1�1 cos a1x sin a3zþ 4�2�1 sin 2a02y cos a3z

þ 4�3�3 sin a1x sin a02y; ð37Þ

where a02 = a2/2 and �3 = �½ða2
1 þ a022 Þ

1=2
� = �½ða2

1 þ a2
2=4Þ1=2

�.

If one compares equation (37) with equation (33), one sees

that equation (37) is a special case of equation (33). The terms

of equation (37) with cos a1x sin a3z and sin a1x sin a02y are

present in equation (33) [the comparison yields the unknown

coefficient C1 of equation (36)]. Although the term of equa-

tion (37) with sin 2 a02y cos a3z is not written down in equation

(33), it is admitted by the C9
2v symmetry. Only the term with

cos a1x cos a3z which figures in the general series of equation

(33) and which is admitted by the Kirkwood approximation

used for equation (22) is missing from equation (37). Strictly

speaking, the Kirkwood approximation allows one more term,

namely, the term with cos 2a02y from equation (33). For

simplicity’s sake we discard this term, implying that �(2a02) =

�(a2) 	 0.

We should next deduce equations for the parameters �1, �2

and �3 that enter into equation (37), which can be done with

use made of equation (16) as in x4. In place of equations (21)

and (34) we have now �1 = ia101, �2 = ia021, �3 = �a110. As a

result, analogously to equations (23)–(26) we shall obtain that

�1

�0

¼
I
ð2Þ
1 �1;�2;�3ð Þ

I
ð2Þ
0 �1;�2;�3ð Þ

;
�2

�0

¼
I
ð2Þ
2 �1;�2;�3ð Þ

I
ð2Þ
0 �1;�2;�3ð Þ

;
�3

�0

¼
I
ð2Þ
3 �1;�2;�3ð Þ

I
ð2Þ
0 �1;�2;�3ð Þ

;

ð38Þ

where

I
ð2Þ
0 �1; �2; �3ð Þ

¼
1

8
3

Z2

0

Z2

0

Z2

0

exp½�4ð�1 cos �1 sin �3

þ �2 sin 2�2 cos �3 þ �3 sin �1 sin �2Þ� d�1 d�2 d�3; ð39Þ

I
ð2Þ
1 �1; �2; �3ð Þ ¼

1

8
3

Z2

0

Z2

0

Z2

0

cos �1 sin �3

� exp½�4ð�1 cos �1 sin �3 þ �2 sin 2�2 cos �3

þ �3 sin �1 sin �2Þ� d�1 d �2 d�3; ð40Þ

I
ð2Þ
2 �1; �2; �3ð Þ ¼

1

8
3

Z2

0

Z2

0

Z2

0

sin 2�2 cos �3

� exp½�4ð�1 cos �1 sin �3 þ �2 sin 2�2 cos �3

þ �3 sin �1 sin �2Þ� d�1 d�2 d�3; ð41Þ

I
ð2Þ
3 �1; �2; �3ð Þ ¼

1

8
3

Z2

0

Z2

0

Z2

0

sin �1 sin �2

� exp½�4ð�1 cos �1 sin �3 þ �2 sin 2�2 cos �3

þ �3 sin �1 sin �2Þ� d�1 d�2 d�3; ð42Þ

�1 ¼
�1�1

	
; �2 ¼

�2�1

	
; �3 ¼

�3�3

	
: ð43Þ

From these formulae it follows that

I
ð2Þ
1 ¼ �

1

4

@Ið2Þ0

@�1

; I
ð2Þ
2 ¼ �

1

4

@Ið2Þ0

@�2

; I
ð2Þ
3 ¼ �

1

4

@Ið2Þ0

@�3

: ð44Þ

The integral I
ð2Þ
0 can be calculated with the help of the series

I
ð2Þ
0 �1; �2; �3ð Þ ¼

X1
n¼0

Xn

m¼0

�2m
3

m!ðn�mÞ!

�
Xn�m

l¼0

ð2n� 2lÞ!ð2n� 2m� 2lÞ!ð2lÞ!�2l
1 �

2n�2m�2l
2

ðlÞ!2ðn�m� lÞ!2ðn� lÞ!ðmþ lÞ!ð2n�m� 2lÞ!
:

ð45Þ

With use made of equation (38) the equations of (43) can be

recast as

	

�0�1

¼
I
ð2Þ
1 �1; �2; �3ð Þ

�1I
ð2Þ
0 �1; �2; �3ð Þ

;
�2I
ð2Þ
1 �1; �2; �3ð Þ

�1I
ð2Þ
2 �1; �2; �3ð Þ

¼ 1;

�3I
ð2Þ
1 �1; �2; �3ð Þ

�1I
ð2Þ
3 �1; �2; �3ð Þ

¼
�3

�1

: ð46Þ

These equations together with equation (38) yield the

temperature dependence of �1, �2 and �3 with �1, �2, �3 as

parameters. On the basis of equation (18), by analogy with

equation (32), we calculate the Helmholtz free energy Fc

relevant to the crystal,

Fc �
F � Ff

�0j�1jN
¼ 2

�2
1 þ �

2
2 þ �3�

2
3=�1

�2
0

� ~		 ln I
ð2Þ
0 ; ð47Þ

with the same dimensionless temperature ~		 ¼ 	=�0j�1j.

If �3 = 0, one can see that I
ð2Þ
0 ¼ I

ð1Þ
0 , I

ð2Þ
1 ¼ I

ð1Þ
1 , I

ð2Þ
2 ¼ I

ð1Þ
2 and

I
ð2Þ
3 ¼ 0, so that one has the parent phase of x4. If �3 6¼ 0, one

has the C9
2v phase. Passing to the limit as �3! 0 with �1 = �2 in

the last equation of (46) one arrives at the condition for

formation of the C9
2v phase:
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�3

�1

¼ �
I
ð1Þ
1 �1; �1ð Þ

4�1I
ð2Þ
31 �1ð Þ

; ð48Þ

where

I
ð2Þ
31 �1ð Þ ¼

1

8
3

Z2

0

Z2

0

Z2

0

sin2 �1 sin2 �2

� exp½�4�1ðcos �1 sin �3 þ sin 2�2 cos �3Þ� d�1 d�2 d�3

¼
1

16
3

Z2

0

Z2

0

Z2

0

sin2 �1

� exp½�4�1ðcos �1 sin �3 þ sin �2 cos �3Þ� d�1 d�2 d�3:

ð49Þ

The right-hand side of equation (48) is positive [see the

remark in x4 as to the sign of I
ð1Þ
1 ] and thereby �3 must be

negative since �1 < 0. Numerical calculation shows that this

right-hand side tends to unity as �1! 0 or �1!1, and has a

minimum equal to 0.7890 at �1 = 1.6089. Hence, the C9
2v phase

under study can exist only if 0.7890 < �3/�1 < 1. Equation (48)

admits two solutions for each value of �3/�1 from this interval.

The temperature at which the phase transition to the C9
2v

phase occurs can be found from the first equation of (46) in the

same limit as �3! 0 with �1 = �2 found from equation (48).

With use made of equation (48) the relevant dimensionless

temperature can be conveniently written as

~		 �
	

�0 �1



 

 ¼ 4
�3I
ð2Þ
31 �1ð Þ

�1I
ð1Þ
0 �1; �1ð Þ

: ð50Þ

The behaviour of �1, �2, �3 and of the free energy Fc of

equation (47) near the phase-transition point can be eluci-

dated by expanding the integrals of equations (39)–(42) in

powers of �3 with account taken of the fact that �1 6¼ �2 in the

emerging phase, although �1 = �2 in the parent phase. The

relevant procedure is similar, though more involved, to the

one employed for deducing equations (6.13) and (6.14) in

Golovko (2004). Here we shall not describe the procedure and

shall not adduce the resulting cumbersome formulae, which

are of only academic interest, by limiting ourselves to the

results of numerical calculations for the entire temperature

region where the C9
2v phase exists. The calculations were

performed for �3/�1 = 0.9. The second-order phase transition

into the C9
2v phase happens at ~		 = 0.726; as the temperature

lowers, the value of �3 increases from 0 to 0.522 and thereafter

begins to decrease and eventually vanishes at ~		 = 0.149, where

an inverse second-order transition from the C9
2v phase to the

D16
2h phase occurs. We do not represent the curve describing

the C9
2v phase in Fig. 2 as long as the curve, passing slightly

below curve 2, will practically merge with the last at the scale

of the figure. The existence of the inverse phase transition may

be due to the peculiarities of space group D16
2h for the inter-

molecular interactions implied in this paper as pointed out

in x1.

Closing the section, it is worthy of remark that the role of

the order parameter in the present case is played by �3, more

precisely by �3 = �a110, i.e. by the Fourier coefficient a110. A

similar situation holds for the phase transition considered by

Golovko (2004) [see the discussion of equation (6.16) in that

paper].

6. Incommensurate phase

First of all, it is necessary to establish the form of the density

�(r) for the incommensurate phase. In view of the remark at

the end of the preceding section, the role of the order para-

meter in the present approach is played by Fourier coefficients

almn. According to the Landau theory (x2) the order parameter

in the incommensurate phase is spatially modulated. Conse-

quently, the coefficients almn in the incommensurate phase

should be of the form

almn ¼
P1

p¼�1

almnp expðipka02yÞ; ð51Þ

where, for convenience, we have introduced a02 into the

exponent in order that the parameter k be dimensionless.

Being irrational, the parameter characterizes the periodic

modulation of almn in the incommensurate phase.

Substituting equation (51) into equation (19) with a2! a02
(we should have the C9

2v phase if k = 0) yields

�ðrÞ ¼
P1

l;m;n;p¼�1

almnp exp½iðla1xþma02yþ na3zþ pka02yÞ�:

ð52Þ

This nonperiodical three-dimensional density �(r) is char-

acterized by four parameters a1, a02, a3 and ka02. It is worth

remarking that the symmetry of such a density may be

described with the aid of superspace groups (Janssen &

Janner, 1987; Janssen et al., 2007). By equation (11) analo-

gously with equation (14), we can also calculate the potential

U(r) if �(r) is given by equation (52):

UðrÞ ¼
P1

l;m;n;p¼�1

almnp�f½l
2a2

1 þ ðmþ kpÞ
2
a021 þ n2a2

3�
1=2
g

� exp½iðla1xþma02yþ na3zþ pka02yÞ�: ð53Þ

The present approach leans heavily on the symmetry of

Fourier series in the case of space groups. At the same time,

the series of equation (52) is not a Fourier series if k is irra-

tional. For this reason we adopt the following strategy. An

irrational number k can be represented with any desired

precision by a ratio of two integers � and 
, namely k = �/
, if


 and � ! 1. When k = �/
, from equation (52) it follows

that the period of �(r) along the y axis is D2 = 
d02 = 2

/a02.

This consideration suggests an idea of representing the

incommensurate phase as the limit of a sequence of long-

period commensurate phases when D2!1.

This idea, however, encounters a serious difficulty. In the

case where k = �/
 while 
 and � change, one has in fact a

devil’s staircase (see Golovko & Levanyuk, 1981a,b, and

references therein). Even if a variation of k = �/
 is arbitrarily

small, symmetry and some physical quantities undergo irre-

gular jumps (Golovko & Levanyuk, 1981a,b), so that no
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definite limit exists as 
, � ! 1. Let us analyse the

commensurate phases at the devil’s staircase relevant to

ammonium fluorberyllate. Inside the Brillouin zone, the irre-

ducible representation T2 considered in x5 splits into two

irreducible representations T2 and T4 under number T31 in

Kovalev’s (1986, 1993) tables. It is unknown which of these

two representations corresponds to curve 2 (the soft-mode

branch) in Fig. 1(b). An analysis akin to the one performed by

Golovko & Levanyuk (1981a,b) shows that, if in K = ma2/n we

take the integers m and n to be odd and even, respectively,

both the representations give point group C2v with the z polar

axis as in the preceding section. Therefore with these m and n

we avoid the symmetry jumps when changing K.

Still another condition should be met. The above symmetry

concerns in fact the supercell with the period D2 = 
d02. When,

according to x2, the incommensurate phase becomes domain-

like (near the lock-in transition), the cells of period d02 inside

the domains have the structure of the low-temperature

commensurate phase, which amounts to saying that they are

of C9
2v symmetry as well. The C9

2v symmetry transformations

contain a translation by d02=2, which signifies the translation by

D2/2 = 
d02=2 for the supercell (the translations along the x and

z axes are identical in the cell and supercell). If 
 is odd (
 =

2
0 + 1), one has D2/2 = 
0d02 + d02=2, that is to say, one finds

oneself after the translation in the middle of the cell as one

should. Hence, the integer 
 in k = �/
 must be odd. From Fig.

1 and the fact that a02 = a2/2 in equation (52) it follows that the

fraction m/n in K = ma2/n and k = �/
 are interrelated by m/n

= 1/2 � k/2 = (
 � �)/(2
). Inasmuch as we should have m/n =

odd/even while 
 is odd, the integer � must be even. As a

result, we see that, if the integer 
 is odd while the integer � is

even in k = �/
, in the limit as � and 
!1 we should arrive

at the required incommensurate phase without any irregular

jumps characteristic of the devil’s staircase. In what follows we

assume that the fraction �/
 is irreducible, which is equivalent

to saying that the integers � and 
 are relatively prime.

We now turn to the long-period phases. Upon putting k =

�/
 we apply the C9
2v symmetry operations to equation (52) to

obtain

almnp ¼ a�l;�m;n;�p �1ð Þlþ
mþn
¼ a�l;m;n;p �1ð Þ
m

¼ al;�m;n;�p �1ð Þlþn: ð54Þ

Here we have used the fact that (�1)�p = 1 for � is even. To

this must be added the condition a
lmnp ¼ a�l�m�n�p as �(r) is

real. Now, instead of the general form of equation (53), we are

in a position to write down the potential for the long-period

phases which goes over into equation (37) if k = 0 (the fact that


 is odd is also taken into account):

UðrÞ ¼ �0�ð0Þ þ 4 cos a1x sin a3z
P1
p¼0

�1p�1p cos pka02y

þ 4 cos a3z
P1

p¼�1

�2p�2p sinð2þ pkÞa02y

þ 4 sin a1x
P1

p¼�1

�3p�3p sinð1þ pkÞa02y; ð55Þ

where �10 = ia1010, �1p = 2ia101p if p 6¼ 0, �2p = ia021p, �3p =

�a110p and

�1p ¼ �½ða
2
1 þ p2k2a022 þ a2

3Þ
1=2
�; �2p ¼ �f½ð2þ pkÞ

2
a022 þ a2

3�
1=2
g;

�3p ¼ �f½a
2
1 þ ð1þ pkÞ2a022 �

1=2
g: ð56Þ

Although the summation in equation (55) should not be

extended up to infinity once the Kirkwood approximation is

used, the potential of equation (55) contains a great many

terms because the value of k is usually small [k 	 0.01 for

ammonium fluorberyllate (Iizumi & Gesi, 1977)].

As long as k = �/
, the potential U(r) of equation (55) and

thereby the density �(r) in equation (9) are periodic and we

can expand �(r) in a Fourier series. We shall, however, obtain

the coefficients almn of equation (19), whereas we need the

coefficients almnp of equation (52). Therefore, an interrelation

between almn and almnp is required. To this end we recast

equation (19) for the long-period phases replacing a2 by a02/

since D2 = 
d02; besides, we substitute s for m:

�ðrÞ ¼
P1

l;s;n¼�1

alsn exp½iðla1xþ na3zÞ þ isa02y=
�: ð57Þ

Comparing this with equation (52) where k = �/
 we see that s

= 
m + �p. This is a Diophantine equation for m and p. As

long as � and 
 are relatively prime, the equation admits a

solution with arbitrary s; moreover, it has an infinite number

of solutions with the same s. If one writes s = 
m0 + �p0 for

another solution and compares this with the first one, one

arrives at

�



¼

m�m0

p0 � p
: ð58Þ

The integers � and 
 being relatively prime, this relation is

satisfied only if m � m0 = t� and p0 � p = t
 with an arbitrary

integer t, from which m0 = m � t� and p0 = p + t
 for any other

solution.

We see now that, to obtain equation (57) from (52), at a

given s we should add up all almnp for which 
m + �p = s with

the result

alsn ¼
P1

t¼�1

al;m�t�;n;pþt
: ð59Þ

The coefficients almnp in equation (51) should tend to zero as

|p| tends to infinity; the same occurs if |m|!1 because almn

! 0 in this limit. Consequently, as 
, �!1, only the term

with t = 0 remains in the sum of equation (59), which finally

yields

almnp ¼ al;
mþ�p;n: ð60Þ

With this formula at our disposition we can calculate the

Fourier coefficients almn with the help of the standard proce-

dure, and we shall arrive at an equation of the type of equation

(16) into which the potential U(r) of equation (55) should be

substituted. Afterwards, with use made of equation (60) we

shall find the following equations for the coefficients �ip (i = 1,

2, 3) that figure in equation (55):
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�10

�0

¼
J10

J0

;
�1p

�0

¼
2J1p

J0

if p 6¼ 0;
�2p

�0

¼
J2p

J0

;
�3p

�0

¼
J3p

J0

;

ð61Þ

where

J0 ¼
1

8
3

Z2

0

Z2

0

Z2

0

exp½�Uð�1; �2; �3Þ� d�1 d�2 d�3; ð62Þ

J1p ¼
1

8
3

Z2

0

Z2

0

Z2

0

cos �1 cos p��2 sin �3

� exp½�Uð�1; �2; �3Þ� d�1 d�2 d�3; ð63Þ

J2p ¼
1

8
3

Z2

0

Z2

0

Z2

0

sinð2
þ p�Þ�2 cos �3

� exp½�Uð�1; �2; �3Þ� d�1 d�2 d�3; ð64Þ

J3p ¼
1

8
3

Z2

0

Z2

0

Z2

0

sin �1 sinð
þ p�Þ�2

� exp½�Uð�1; �2; �3Þ� d�1 d�2 d�3; ð65Þ

Uð�1; �2; �3Þ ¼ 4 cos �1 sin �3

P1
n¼0

�1n cos n��2

þ 4 cos �3

P1
n¼�1

�2n sinð2
þ n�Þ�2

þ 4 sin �1

P1
n¼�1

�3n sinð
þ n�Þ�2; ð66Þ

�1n ¼
�1n�1n

	
; �2n ¼

�2n�2n

	
; �3n ¼

�3n�3n

	
: ð67Þ

From equations (62)–(65) it follows that

J1p ¼ �
1

4

@J0

@�1p

; J2p ¼ �
1

4

@J0

@�2p

; J3p ¼ �
1

4

@J0

@�3p

: ð68Þ

The next step is to find out the form of the above integrals in

the limit as 
 and � ! 1 in order to arrive at the incom-

mensurate phase. In view of equation (68) it is sufficient to

consider the integral J0 alone, which is done in the Appendix.

As a result, we shall have for the incommensurate phase that

J0 ¼
1

16
4

Z2

0

Z2

0

Z2

0

Z2

0

exp½�Uð�1; �2; �3; �4Þ� d�1 d�2 d�3 d�4;

ð69Þ

U �1; �2; �3; �4ð Þ ¼ 4 cos �1 sin �3

P1
n¼0

�1n cos n�4

þ 4 cos �3

P1
n¼�1

�2n sin 2�2 þ n�4ð Þ

þ 4 sin �1

P1
n¼�1

�3n sin �2 þ n�4ð Þ: ð70Þ

It will be noted that k has disappeared explicitly off equations

(69) and (70); it remains only implicitly in �in through equa-

tion (56). The integrals J1p, J2p and J3p can now be computed

with the help of equation (68).

Combining equations (67) and (61) we arrive at a set of

equations for �ip:

	

�0�1

¼
J10

�10J0

;
	

�0�1p

¼
2J1p

�1pJ0

if p 6¼ 0;
	

�0�2p

¼
J2p

�2pJ0

;

	

�0�3p

¼
J3p

�3pJ0

; ð71Þ

where �1 is the same as in equation (22). Having found the

�ip’s from the set as functions of the temperature 	 we are able,

by equation (61), to compute the coefficients �ip that describe

the incommensurate phase. It is necessary also to have the

Helmholtz free energy. It can be calculated on the basis of

equation (4.27) of Golovko (2001) upon substituting equa-

tions (52) and (53) there:

F ¼ 	N ln
1

�

m

2
	

� �3=2

 �

þ 	N ln C

�
V

2

X
l;m;n;p

almnp



 

2�f½l2a2
1 þ ðmþ kpÞ

2
a022 þ n2a2

3�
1=2
g:

ð72Þ

The constant C herein, the same as in equation (9), is to be

expressed in terms of the average density �0 = a000 = a0000

analogously to equation (3.10) of Golovko (2001). As a result,

the first two terms on the right can be recast as in equation

(18). For the example considered in the present section, one

has

F ¼ Ff � 	N ln J0 � 2V�2
10�1 � V

P1
p¼1

�2
1p�1p

� 2V
P1

p¼�1

�2
2p�2p � 2V

P1
p¼�1

�2
3p�3p: ð73Þ

As distinct from the previous sections, the equations of (71)

represent a great number of equations since the value of the

integer p can be very large in spite of the Kirkwood approx-

imation employed, according to the remark concerning

equation (55). It can be shown that, if k = 0, the above

equations transform into the equations of x5 describing the C9
2v

phase.

Considering the transition from the parent phase to the

incommensurate one we set �10 = �20 = �1, �30 = 0, and assume

that only the first harmonics with the coefficients �31 and �3,�1

come into being initially because it is just these harmonics that

correspond to the last term in equation (36). We expand the

integrals J0, J31 and J3,�1 in powers of �31 and �3,�1 and retain

only linear terms. The result is placed in the last equation of

(61) with account taken of equation (67). In this manner we

obtain the following two equations:
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	I
ð1Þ
0 �1; �1ð Þ

�0

þ 4�31I
ð2Þ
31 �1ð Þ

" #
�31 ¼ 0;

	I
ð1Þ
0 �1; �1ð Þ

�0

þ 4�3;�1I
ð2Þ
31 �1ð Þ

" #
�3;�1 ¼ 0; ð74Þ

where I
ð1Þ
0 �1; �1ð Þ and I

ð2Þ
31 �1ð Þ are the same integrals as in

equations (24) and (49) and, according to equation (56),

�31 ¼ �f½a
2
1 þ ð1þ kÞ

2
a022 �

1=2
g; �3;�1 ¼ �f½a

2
1 þ ð1� kÞ

2
a022 �

1=2
g:

ð75Þ

It follows from equation (74) that one of the coefficients �31 or

�3,�1 acquires a nonzero value if the expression in the relevant

brackets vanishes, which gives two temperatures:

	

�0 �1



 

 ¼ 4
�31I

ð2Þ
31 �1ð Þ

�1I
ð1Þ
0 �1; �1ð Þ

;
	

�0 �1



 

 ¼ 4
�3;�1I

ð2Þ
31 �1ð Þ

�1I
ð1Þ
0 �1; �1ð Þ

: ð76Þ

If k = 0, then �31 = �3,�1 = �3, and both the temperatures

coincide with the temperature of equation (50). The quantities

�31 and �3,�1, however, cannot have an extremum at k = 0

because of the presence of terms linear in k. One of the

quantities must be a maximum at k 6¼ 0 (for definiteness, we

assume that k > 0). The maximum will yield the transition

temperature to the incommensurate phase by virtue of

equation (76) and the temperature will be higher than the one

given by equation (50). Simultaneously, one will have the

corresponding value of k.

The above reasoning is akin to the one concerning equation

(8). In the Landau theory, the behaviour of the soft-mode

branch at K = a2/2 displayed in Fig. 1(b) is reflected in the

presence of the Lifshitz invariant (see x2). In the statistical

approach where the Lifshitz invariant does not figure, that

behaviour manifests itself in the presence of linear in k terms

in �ip of equation (56).

Having found the phase-transition temperature one can

elucidate the further temperature behaviour of the incom-

mensurate phase upon solving the equations (71) [to do this,

one must, of course, know the concrete form of �ip that

depends upon the intermolecular potential and the pair

correlation function given by equations (15) and (12)]. The

equations also contain k via �ip. The equilibrium value of k has

to be computed by minimizing the Helmholtz free energy of

equation (73) as far as it is implied in the present study that the

external conditions are specified by the volume of the crystal

(more precisely, by its periods) and by the temperature, so that

the relevant thermodynamic potential is just the Helmholtz

free energy.

One further point should be discussed. In the Landau

theory, we had only two equations (5) and (6) that described

the incommensurate phase (in the case of a two-component

order parameter). In the present statistical theory, the

incommensurate phase is described by a great many equations

of (71) (although the equations are not differential). This is

due to the following. In the Landau theory, one presumes that

the order parameter is one of the normal coordinates while the

normal coordinates are mutually independent in a linear

approximation. In the present statistical theory, the role of

the order parameter is played by Fourier coefficients as

mentioned at the outset of this section, whereas different

Fourier coefficients are interrelated. It may be added that

the neglect of other normal coordinates below the phase-

transition point in the Landau theory is only an approximation

whose validity is not clear (see the end of x2).

If the dispersion curves behave as the ones presented in Fig.

1(a), the quantities �ip should depend upon k quadratically as

�1p of equation (56). One can also deduce an equation

equivalent to equation (76). In this case the quantity, say �11,

will have an extremum at k = 0. If, however, the extremum is

not a maximum, the maximal possible value of �11 and the

relevant temperature 	 will anew be at k 6¼ 0, which amounts

to saying that one will again have an incommensurate phase,

of type II in this event. Hence, the present approach enables

one to treat the type-II incommensurate phases as well.

7. Concluding remarks

In the present paper, a mathematical apparatus has been

worked out which permits one to study commensurate as well

as incommensurate phase transitions and the relevant phases

from the viewpoint of statistical mechanics. It is shown how

one can carry out the preliminary symmetry analysis when one

deals with a concrete crystal. The analysis can be performed

analogously with the one in the Landau phase-transition

theory where this analysis is well elaborated, although some

refinements are required which are not obligatory in the

Landau theory. After the analysis one is able to deduce a set of

equations that describe the emerging phases and corre-

sponding phase transitions. The equations of the statistical

approach contain quantities that may be directly calculated

once the intermolecular potential and the pair correlation

function are known, while the equations of the Landau theory

contain only phenomenological coefficients.

The Landau theory as applied to incommensurate phases

leans heavily on the notion of the Lifshitz invariant. In the

statistical approach, the Lifshitz invariant does not figure and

the relevant behaviour of the soft-mode branch is reflected in

another way. The treatment of an incommensurate phase in

the statistical theory is substantially complicated because the

symmetry of the phase cannot be described in terms of

customary space groups. For this reason, a strategy of repre-

senting the incommensurate phase as the limit of a sequence

of long-period commensurate phases whose period tends to

infinity was adopted in the paper. The strategy, however,

encounters a serious difficulty because a devil’s staircase

occurs in this situation. We have chosen a method of moving

along the devil’s staircase such that it was possible to avoid

irregular jumps characteristic of the devil’s staircase and to

arrive at a definite limit. It should be added that the mathe-

matical apparatus worked out in the paper can be used for

the study of incommensurate phases of type I as well as of

type II.

The studies in the paper were carried out using

displacive phase transitions as an example because a soft
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mode exists in this event and the situation occurring can be

conveniently illustrated with the help of Fig. 1. All results

of the paper remain valid for order–disorder phase

transitions as well where occupation-modulated structures

arise.

It should be emphasized that the present paper is a first,

though essential, step in applying statistical mechanics to

studying the incommensurate phases and the phase transitions

relevant to them. We have shown that the phase-transition

temperature and properties of the emerging phase are

expressible in terms of the function �(A) of equation (15)

whose form depends upon the pair correlation function.

Consequently, the next step is to find an equation for this last

function leaning on the second equation of the BBGKY

hierarchy. Seeing that the pair correlation function should be

directly dependent on the intermolecular potential, the second

step will enable one to express the phase-transition tempera-

ture, peculiarities of the transition and properties of the

incommensurate phase in terms of the intermolecular poten-

tial. At the same time, to find the pair correlation function is

not a simple matter inasmuch as the second BBGKY equation

contains a triplet correlation function as well. The problem is

complicated by the fact that, as distinct from a fluid, the pair

correlation function in a crystal is anisotropic and its form is

rather involved, even in the case of an ordinary crystal

(Golovko, 2007).

Some remarks should be made as to the approach where

one describes the symmetry of an incommensurate phase in

terms of superspace groups (Janssen & Janner, 1987; Janssen

et al., 2007). An especial investigation is needed in order

to uniquely prescribe a superspace group for a given incom-

mensurate phase, which requires elaborate techniques

(Janssen et al., 2007). At the same time, in the Landau theory

it suffices to know the space group of the parent phase and

that of the low-temperature commensurate phase in order to

write down unambiguously the free energy of the type of

equation (1) which enables one to investigate properties of

the incommensurate phase. The same occurs in the present

statistical approach, where we have obtained a unique

system of equations for the incommensurate phase in the

crystal under study on the basis of the above space groups

alone.

It is instructive nevertheless to compare the present

approach and the superspace-group one. In line with the

superspace-group approach we replace y in the last term of the

exponent of equation (52) by an independent variable, say u,

implying that we may always put u = y at the end; for

convenience we set ka02 = a4 as well. The same replacements

are to be made in equation (53). Now equation (52) becomes

an ordinary four-dimensional Fourier series for �(r, u) whose

coefficients almnp can be calculated in a standard way. With use

made of equation (9) written for �(r, u) and U(r, u) we obtain

a set of equations for almnp analogous to equation (16). To

achieve a full analogy one needs to single out the term with

�(0) and to determine the constant C from the condition that

a0000 = �0. As a result, we arrive at the following set of

equations:

almnp ¼
�0

16
4G

Z2

0

Z2

0

Z2

0

Z2

0

exp½�ð1=	ÞU4ð�1; �2; �3; �4Þ

� iðl�1 þm�2 þ n�3 þ p�4Þ� d�1 d�2 d�3 d�4; ð77Þ

where

G ¼
1

16
4

Z2

0

Z2

0

Z2

0

Z2

0

exp½�ð1=	ÞU4ð�1; �2; �3; �4Þ� d�1 d�2 d�3 d�4;

ð78Þ

U4ð�1; �2; �3; �4Þ

¼
P10

l;m;n;p¼�1

almnp�f½l
2a2

1 þ ðmþ kpÞ
2
a021 þ n2a2

3�
1=2
g

� exp½iðl�1 þm�2 þ n�3 þ p�4Þ�: ð79Þ

It may be noted that the auxiliary variable u has disappeared

off these formulae so that there is no need to put u = y here.

If one specifies U4(�1, �2, �3, �4) of equation (79) on the basis

of equation (55) with the above replacements, one will see that

G of equation (78) fully coincides with J0 of equation (69).

This result entails two important conclusions. First, the lengthy

calculations of the Appendix are accurate. Secondly, the

strategy of long-period commensurate phases chosen in x6 and

the method of overcoming the peculiarities of the devil’s

staircase have led to a correct limit.

At the same time, the set of equations (77) by itself is of

little use. The example of the set of equations (16) analogous

to equations (77) demonstrates that the set becomes mean-

ingful and yields definite results only if one specifies the set for

a concrete space group, which is seen from xx4 and 5 above

and from the paper by Golovko (2004). However, even if one

knows a definite superspace group for a given incommensu-

rate phase and can specify the set of equations (77) with this

superspace group, this will be of little avail for studying the

relevant phase transitions. For example, the general form of

the potential U(r) of equation (33) for space group C9
2v says

nothing about possible phase transitions. Only the potential

U(r) of equation (37), which is a particular case of equation

(33) and which was deduced from knowledge of the parent

and low-temperature space groups, enabled us to study the

phase transitions. The potential U(r) of equation (55) that was

used for studying the incommensurate phase transition was

again obtained with the help of those space groups alone, and

no superspace groups were required at all.

APPENDIX A
Limit of the integral J0 as m and l ! 1

This limit concerns only the integration over �2 and, instead of

J0 of equation (62), we shall consider the following integral

with the same U(�1, �2, �3) as in equation (66):

I ¼
R2

0

exp½�Uð�1; �2; �3Þ� d�2: ð80Þ
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Recalling that k = �/
 we change the variable of integration

according to �2 = y/
, divide the new interval of integration

into 
 intervals of length 2
 and represent the integral I as a

sum of 
 integrals in each of which we change the variables of

integration so that the integration shall be from 0 to 2
. As a

result,

I ¼
1




X
�1

j¼0

Z2

0

exp½�UjðyÞ� dy; ð81Þ

UjðyÞ ¼ 4 cos �1 sin �3

P1
p¼0

�1pcosð2
jpkþ pkyÞ

þ 4 cos �3

P1
p¼�1

�2p sin 2
jpkþ ð2þ pkÞy½ �

þ 4 sin �1

P1
p¼�1

�3p sin 2
jpkþ ð1þ pkÞy½ �: ð82Þ

Instead of the discrete variable j, we introduce a continuous

variable t and consider the function (other variables are

regarded as parameters)

f ðtÞ ¼ exp

�
� 4 cos �1 sin �3

P1
p¼0

�1p cosð2
pkt þ pkyÞ

� 4 cos �3

P1
p¼�1

�2p sin 2
pkt þ ð2þ pkÞy½ �

� 4 sin �1

P1
p¼�1

�3p sin 2
pkt þ ð1þ pkÞy½ �

	
: ð83Þ

This function is periodic with the period d = 1/k and can be

expanded into a Fourier series:

f ðtÞ ¼
a0

2
þ
X1
n¼1

an cos 2
knt þ bn sin 2
kntð Þ; ð84Þ

where

an ¼ 2k

Z1=2k

�1=2k

f ð�Þ cos 2
kn� d� ¼
1




Z2

0

f

 
�

2
k

!
cos n� d�;

ð85Þ

the coefficient bn being of no importance for the present

calculations.

The integral I of equation (81) contains the sum

S ¼
X
�1

j¼0

f ðjÞ ¼

a0

2
þ
X1
n¼1

X
�1

j¼0

an cos 2
knjþ bn sin 2
knjð Þ:

ð86Þ

Remembering that k = �/
, by virtue of equations (1.342.1, 2)

of Gradshteyn & Ryzhik (1962, 1965) one has

X
�1

j¼0

cos 2
knj ¼
sin
�n

sinð
�n=
Þ
cos½ð
� 1Þ
kn�;

X
�1

j¼0

sin 2
knj ¼
sin
�n

sinð
�n=
Þ
sin½ð
� 1Þ
kn�: ð87Þ

It is seen that these sums vanish owing to sin
�n except for

the case where n = p
 with p = 1, 2, 3, . . . , when one has 0/0. In

this case, cos 2
p�j = 1 while sin 2
p�j = 0, and equation (86)

yields finally

S ¼

a0

2
þ 


X1
p¼1

ap
: ð88Þ

The last sum should approach zero as 
 ! 1 because the

Fourier coefficients an of equation (84) tend to zero as n!1.

In the event of a function of the type of equation (83), the

Fourier coefficients an tend to zero exponentially inasmuch as

the function has all derivatives and they are continuous.

Substituting all of these into equation (81) and letting 
!
1, in the end we obtain

I ¼
1

2


Z2

0

dy

Z2

0

exp½�Uð�Þ� d�; ð89Þ

Uð�Þ ¼ 4 cos �1 sin �3

P1
p¼0

�1p cos pð� þ kyÞ

þ 4 cos �3

P1
p¼�1

�2p sin 2yþ pð� þ kyÞ½ �

þ 4 sin �1

P1
p¼�1

�3p sin yþ pð� þ kyÞ½ �: ð90Þ

Replacing � + ky by �4 and y by �2 (the integration over �4 can

again be from 0 to 2
 for the integrand has a period equal to

2
) and putting the result into equation (62) we arrive at

equation (69).
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